首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
基础科学   1篇
  11篇
综合类   2篇
水产渔业   2篇
畜牧兽医   1篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1992年   1篇
排序方式: 共有17条查询结果,搜索用时 156 毫秒
1.
Abstract

Details and some evaluation are given of the use of a dialysis method for sampling pore water from depth in wetland substrata (peats), with particular reference to measurement of concentrations of ion species with stabilities dependent on redox potential. The method is based upon the burial and subsequent retrieval (after equilibration) of cells made from dialysis membrane filled with deionized water. Preliminary results of field investigations of concentrations of dissolved iron and sulphide in the pore water of base‐rich mires, as sampled by this method, are given. Results suggest that the method could have very considerable application and that its potential, and possible problems, deserve further examination.  相似文献   
2.
Due to their high emission potential, the reporting of CO2 emissions from peatlands requires exact emission factors for different land use categories. Recently used emission factors are mainly based on CO2 flux measurements by chamber techniques or the micrometeorological eddy covariance (EC) method. However, evidence about the reliability and comparability of annual CO2 balances based on these methods is scarce. Therefore, manual chamber measurements of ecosystem respiration (RECO) and net ecosystem exchange (NEE) were conducted for two years (March 2012–April 2014) to model annual balances of two sites on fen soils with different land use intensity in northern Germany: an unutilized and rewetted grassland (UG) and an intensively utilized wet grassland (GW). Simultaneously, EC measurements of NEE were conducted on the sites. Two reasons for occasionally great deviations in NEE between the methods could be observed: (1) the accordance of both methods was most hampered during transition periods such as the beginning of the growing season and the onset of regrowth after a grassland defoliation due to different spatial scales of EC and chamber measurements and (2) RECO and gross primary production (GPP) partitioned from EC NEE measurements were systematically lower than those from the chamber‐based model, which could be a result of the EC energy balance gap. Differences were more pronounced for the managed site GW as a result of more frequent regrowth periods. It is concluded that the EC and chamber method can show comparable results for the CO2 exchange of grasslands on fen soils when the limitations of both methods are known and considered for the reporting of emission factors. These limitations are due to energy balance closure and potentially biased footprints for EC and a restricted representativeness especially during early stages of plant development for the chamber method.  相似文献   
3.
Drainage and intensive use of fens lead to alterations in the physical characteristics of peat soils. This was demonstrated using parameters of water balance (available water capacity) and the evaluated unsaturated hydraulic conductivity. Deriving the distribution of the pore size from the water retention curve was flawed because of shrinkage due to drainage, especially at high soil water potentials. These errors became greater as the peat was less influenced by soil‐genetic processes. The water retention curves (desorption) evaluated in the field and the laboratory satisfactorily corresponded. However, the wetting‐ and drainage‐curves obtained in the field differed up to 30 vol.‐% water content at same soil water potentials. These differences were largely due to a wetting inhibition.  相似文献   
4.
 Short-term (3–6 days) and long-term (27 days) laboratory experiments were carried out to determine the distribution of assimilated C in the system Phragmites australis (common reed)-waterlogged fen soil after 14C pulse labelling. The investigated system of fen plants and anaerobic organic soil showed different patterns of assimilated 14C distribution when compared to systems with cultivated plants and aerobic mineral soil. Between 90% and 95% of the 14C in the system was found in the reed plants. A maximum of 2% of the assimilated plant 14C was released from the fen soil as CO2 and about 5–9% remained in the soil. The 14C remaining in the waterlogged fen soil of the reed plant had the same amount as that of a cultivated plant in mineral soil, despite lower 14C-release (i.e. rhizodeposition and root respiration) from reed roots. Assuming that root respiration of fen plants is low, this indicates that microbial C turnover in waterlogged fen soil is much slower than in mineral soil. The estimated quantity of the assimilated C remaining in the soil was of an ecologically relevant order of magnitude. Received: 8 July 1999  相似文献   
5.
陈甲睿 《湖南农机》2015,(2):122-123
清代永佃制是我国封建社会末期的一种新型的农业生产关系。永佃权是对田主土地产权的分割。它是佃农通过与田主协议的形式或斗争的手段而获取的一种特殊的土地权益——既可长久使用,又与田主共同占有了所耕作的租田。从这个意义上讲,永佃农民与出租土地者是具有同等资格的两个田主。  相似文献   
6.
Summary Gross rates of N mineralization, assimilation, nitrification, and NO in3 sup- reduction were determined in soil from a wet riparian fen by 1-day incubations of soil cores and slurries with 15N-labelled substrates. N mineralization transformed 0.1% of the total organic N pool daily in the soil cores, of which 25% was oxidized through autotrophic nitrification and 53%–70% was incorporated into microorganisms. N mineralization and nitrification were markedly inhibited below 5 cm in soil depth. At least 80% of the NO in3 sup- reduction in aerated cores occurred through dissimilatory processes. Dissimilatory reduction to NH in4 sup+ (DNRA) occurred only below 5 cm in depth. The results show that NH in4 sup+ oxidation was limited by available substrate and was itself a strong regulator of NO in3 sup- -reducing activity. NO in3 sup- reduction was significantly increased when the soil was suspended under anaerobiosis; adding glucose to the soil slurries increased NO in3 sup- reduction by 2.4–3.7 times. Between 3% and 9% (net) of the added NO in3 sup- was reduced through DNRA in the soil slurries. The highest percentage was observed in soil samples from deeper layers that were pre-incubated anaerobically.  相似文献   
7.
  • 1. Multivariate analysis of vegetation and water beetles recorded in the abandoned drains and flooded workings of a cut‐over lowland Irish raised bog, Montiaghs Moss, shows that water depth and trophic status are key predictors of plant species composition and that vegetation community structure significantly explains water beetle composition.
  • 2. The spatial distribution of secondary and tertiary drains and peat pits influences species composition indirectly, through trophic status, by connecting habitats with primary agricultural drains passing through the bog.
  • 3. Habitat isolation and the cessation of drain management promote change in the submerged aquatic vegetation, emergent‐swamp and poor‐fen habitats recorded by facilitating vegetation development and surface acidification.
  • 4. The ecological consequences are likely to be a reduction in the area of open‐water habitats, the development of poor‐fen vegetation and the subsequent loss of high conservation value species of plants and beetles.
  • 5. Management for biodiversity conservation should initially address water quality, for example, through the European Union (EU) Water Framework Directive, followed by restoration to promote structural and spatial heterogeneity of drain and peat‐pit habitats.
  • 6. At a landscape scale, implementing ditch and peat‐pit management across abandoned cut‐over lowland raised bog habitats in the farmed Northern Ireland countryside, through EU Common Agricultural Policy agri‐environment schemes, would give regional gains.
Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
8.
Abstract

The aim of the study was to analyse aspects of fen soil quality for grassland use with regard to the different topsoil structure and their status of earthification/moorshification (degradation). Fifty fens of different origin, structural status and land use intensity were sampled, analysed and scored by different methods: Visual Soil Assessment, Peerlkamp test and Muencheberg Soil Quality Rating. Suitable soil structure scores were found at different land use intensities with the exception of stock tracks on pastures. These had lower water and air permeability and lower soil strength. Highest visual scores of macrostructure were found where the water table was deeper; while highest overall soil quality scores occurred where the water table was optimum. The accelerated status of moorshification had no effect on the soil quality scores and on the crop yield. At lower levels of soil development (earthification) the crop yield was slightly lower due to higher proportions of inedible plants. It may be concluded that degraded peat soils will have no loss of soil quality and have relatively high soil quality for grassland use if the water table can be managed in a suitable range and the sward quality is maintained.  相似文献   
9.
The intensive agricultural use and consequently the drainage of fen soils have caused modifications in structure and nutrient dynamics. Pedogenetic processes result in the formation of typical soil horizons with distinctive soil properties. These are the basis for soil classification. In the present review, results are compiled. Modifications of abiotic and biotic parameters of fen soils due to drainage and rewetting are presented. Recommendations on the further use of fen soils are submitted.  相似文献   
10.
应用氯前列稀醇和两厢情注射液配合抗生素治疗奶牛子宫内膜炎患牛35头,其治疗效果分别达94.7%和93.8%,单纯应用抗生素治疗子宫内膜炎5头,其治愈率为80%。且两个情期受胎率实验组明显高于对照组。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号